
WML Filtering

Filters are a very important part of WML language, and a fairly complex too for various
reasons. Here, we shall try to explain how to use them with more details than in the reference
wiki pages. But the goal is not to replace these pages, and we assume you have at least some
knowledge of the various WML filters, namely unit and location filters. The examples given
below aren’t always the best way to do things: the goal here is understanding filtering, not to
give a complete WML course.

Basics: How filters work.

Filtering is narrowing a set of objects to a result set using criteria. Let’s give an example :
given a set of cards, if one is asked to select the spades, (s)he will probably check the cards
one by one and create two stacks : one containing only the spades, and another containing the
unselected cards. This is a very simple filter, where the criterion is « this card has spades
color » and the result set is a card stack. The spades cards are said ‘matching’ the filter.

If next we’re asked to find the king of spades, most probably, we will not restart from the
beginning but only scan the spades stack to find the right card. This is an example of two
criteria filter. In WML we would write something like :

[filter]
 color=spades
 value=king
[/filter]

to describe the operation. Criteria are expressions evaluating to true or false. Is this card color
spades ? That’s how we must read the sentence: ‘color=spades’.
Now, stating both criteria must be met is not the only way to combine them:

[filter]
 color=spades,diamonds
 value=king
[/filter]

the first expression will be true if a card color is ‘spades OR diamonds’. It would make no
sense to state they should be ‘spades AND diamonds’, of course.
In many languages, you must specify how criteria combine using the special keywords ‘OR’
and ‘AND’. In WML, you can do so, but most often, you’re not requested to do so. Writing
explicitly the logical operators would give something like that:

[filter]
 [and]
 color=spades
 [or]
 color=diamonds
 [/or]
 [/and]
 [and]
 value=king
 [/and]
 [/filter]

or in natural speech: “is card (color=spades OR color=diamonds) AND value=king ?” Note
here the use of parenthesis. As in algebra, they mean their content must be evaluated prior to
apply the last criterion.
[and] and [or] subtags are WML equivalents of parenthesis. They are not mandatory (like in
some other languages), and this is a cool feature, but can be misleading in complex filters.
The rule is:
 - listed criteria are ANDed, in other words, they must all be true for the object to
match the filter.
 - comma separated lists in a criterion are equivalent to ORed criteria. In other words,
one only is enough for the object to match the filter.

There are some things important to note :

- A complex filter can always be split into simpler filters applied in chain, each filter taking as
starting set the result set of the former one. In our example, we applied the filter
« value=king » to the result set of filter « color=spades ». This is important when building or
debugging filters, because complex ones can easily be reduced to a chain of simpler ones.

- Criteria order is not important from a logical point of view. We could have searched the
kings first, obtaining the four kings in our result set, and the card of color spade next. The
final result is the same. But in WML, for some reasons we shall study later, order can be
important.

- Result sets can contain any number of objects. One can’t assume the result set of our filter
will contain a single card ‘THE king of spades’. A human being would probably stop the
search when finding a king of spades, but filters don’t. If our starting card packet is not a
complete set (some cards were lost, a cheater introduced some more, or anything else), you’ll
find one, none or many kings of spades. It’s a common error in WML to assume filters will
select a single object1.

- Any unit or location will match an empty filter like this one:

[event]
 name=moveto

[filter]
[/filter]

…
[/event]

This event will be triggered on every move of every unit on the map.

1 One can be sure only when filtering with ID’s because they are unique.

Here now are two versions of the same action, using filters and not.

[modify_unit]
 [filter]
 side=2
 [not]
 race=orc
 [/not]
 [/filter]
 side=1
[/modify_unit]

This moves to side 1 all side 2 units except orcs. Please note how filter syntax is after all very
close to natural speech. This is why we shall see a good way to design complex filters is
writing an accurate sentence describing them first.
Using no filter (and assuming ‘all_units’ is an array containing all created units in a scenario)
we should write :

{FOREACH all_units i}
 [if]
 [variable]
 name= all_units[$i].side
 equals=2
 [/variable]
 [and]
 [variable]
 name= all_units[$i].race
 not_equals=orc
 [/variable]
 [/and]
 [then]
 [set_variable]
 name= all_units[$i].side
 value=1
 [/set_variable]
 [unstore_unit]
 variable= all_units[$i]
 [/unstore_unit]
 [/then]
 [/if]
{NEXT i}

Of course, the first version is much more concise. One should mark :
- Filters are hidden loops2 fetching all elements of the starting set.
- Criteria composition is more explicit in the second version. We have here an [and] tag
which is missing in the first one. It shows clearly both condition must be met. In filters, the
[and] tag is most often implicit, as we already seen.

2 Internally, it’s not always the case, but we’ve not to deal with internal implementations.
Conceptually, filters can always be seen as hidden loops.

At this point, a question arises : where are the starting and result sets we talked about ? They
show nowhere. The reply is most often we don’t need to see them, because we don’t need to
create result sets explicitly. We need to use them to specify actions targets or conditions. In
the ‘modify_unit’ example, we apply the action « change side » to the result set of the filter
and then need it no more.
The starting set is implicit too. Most of time, it’s the larger available set of objects : i.e. all
created units (sometimes including the recall list) or all hexes in the map. In the moveto
event, it contains only the moving unit.
Once again, we are not telling these sets really exist in Wesnoth engine code. But these are an
accurate model of how the filters work in WML.

Result sets and arrays.

A good way to get explicitly the result set is to use the ‘store_...’ tags. These actions create
arrays containing the result set of the filter they take as parameter. This is very useful in many
ways. The common use is of course to store units and locations for some processing or later
use. But one can use this to split complex filters and inspect intermediate results. The former
‘modify_unit’ example could be written as :

[store_unit]
 variable=temp1
 [filter]
 side=2
 [/filter]
[/store_unit]
[store_unit]
 variable=temp2
 [filter]
 find_in=temp1
 [not]
 race=orc
 [/not]
 [/filter]
[/store_unit]
[modify_unit]
 [filter]
 find_in=temp2
 [/filter]
 side=1
[/modify_unit]

This trivial example shows not only how to debug complex filters (inspecting the content of
temp1 and temp2 arrays), but how to specify a starting set with the ‘find_in’ key. Without it,
the second ‘store_unit’ tag would store all units except orcs. With it, we ask to apply the
filter to the content of temp1 array only (all side 2 units). It’s like our card example where we
selected the spades first and next the king(s) in the spades stack.
The ‘find-in’ key is really precious in many cases : often it’s easier to build explicitly an
array containing the objects we want to select than creating complex filters to retrieve them.
For example, if we want dying units to drop weapons and other units to retrieve them, it can
be very difficult to create a filter allowing to select locations where the weapons where
dropped. Instead, we can build an array containing their locations (and other informations at

will). Since this array have x and y members, the find_in key of a location filter can use it3. It
would be:

in the die event
[set_variables]
 name=weapons
 mode=append
 [value]
 x=$unit.x
 y=$unit.y
 … anything else, for instance the image name and item id.
 [/value]
[/set_variables]
drop item, etc…

and in a moveto event
[event]
 name=moveto
 first_time_only=no
 [filter]
 side=1
 [filter_location]
 find_in=weapons
 [/filter_location]
 [/filter]
…

let’s give another example.
The scenario’s map features three temples at 10,10 20,20 30,30. We want to give some bonus
gold to side 1 if any side 1 unit visits temple 1,2,3 exactly in that order. Here is a solution
using result sets arrays :

[event]
 name=moveto
 first_time_only=no
 [filter]
 side=1
 x,y=10,10
 [not]
 find_in=temple_1
 [/not]
 [/filter]
 [store_unit]
 mode=append
 variable=temple_1
 [filter]
 id=$unit.id
 [/filter]
 [/store_unit]
[/event]

In temple_1, we store all side 1 units visiting temple_1, but only once (that’s why the [not]

find_in tag, because units can visit the temple more than once).

3 It’s surprising because this array doesn’t contain locations, but it’s a feature, not a side
effect.

[event]
 name=moveto
 first_time_only=no
 [filter]
 side=1
 x,y=20,20
 find_in=temple_1
 [not]
 find_in=temple_2
 [/not]
 [/filter]
 [store_unit]
 mode=append
 variable=temple_2
 [filter]
 id=$unit.id
 [/filter]
 [/store_unit]
[/event]

This time, we store only units previously stored in temple_1 (= they already visited that
temple). Then the last event is obviously :

[event]
 name=moveto
 first_time_only=yes
 [filter]
 side=1
 x,y=30,30
 find_in=temple_2
 [/filter]
 [gold]
 side=1
 amount=1000
 [/gold]
 {CLEAR_VARIABLE temple_1,temple_2}
[/event]

Ordering and writing

We said earlier that criteria order is not significant. That's right from a theoretical point of
view. But, for syntactic reasons and particularly because the radius key in location filters, this
is not fully true in WML.
Actually conditions are applied to candidate objects until one proves to be false or all
conditions are checked. Then, if some condition proves to be false, remaining conditions are
not evaluated (so if there's some radius there, it will not be executed). In some cases, this may
be important. One can assume conditions are evaluated in the order they are found except
logical operators (and, or, not) which are evaluated after other conditions. It’s very important
to note that evaluation order of top level conditions (those not embedded in and/or/not tags) is
undocumented, which means your code shouldn’t rely on it. On the contrary, and/or/not tags
are always executed last, in the order they are written.

So in this example:

 [filter]
 has_weapon=sword
 side=1
 [or]
 side=2
 [/or]
 gender=female
 [/filter]

will be executed using this order:

[filter]
 has_weapon=sword
 side=1
 gender=female
 [or]
 side=2
 [/or]
[/filter]

One should be aware of this for some reasons:

 Clarity: your code will be easier to understand and to debug if you avoid meddling
conditions, nested filters and logical blocks, and write them in the order they are evaluated.

 Performance.
Most of time, performance is not an issue. But it can be if you have a lot of units and use
[filter_wml]. More generally, it’s good programming practice to execute the more restrictive
test first. Consider this example:

[filter]
 race=orc
 x,y=16,22
[/filter]

The first condition will be evaluated on all units. But the second one will be evaluated on all
orcs. Then if we write:

[filter]
 x,y=16,22
 race=orc
 [/filter]

obviously, the second condition will be evaluated once at most, and filtering will be faster.
(Strictly speaking, I should have wrapped second condition in an and tag to force evaluation
order).
Remember too that logical operators (and, or, not) are not mandatory, but are allowed. So
one can use them for clarity sake or to force an evaluation order. It’s particularly important
when using or tags. In the example above one could expect the result set contains all women
of sides 1 and 2 wielding a sword. But it contains actually all side 1 women wielding a sword
plus all side 2 units. Filters work actually as if top level criteria were enclosed in an implicit
and tag: so we should read:

[filter]
 [and] #implicit
 has_weapon=sword
 side=1
 gender=female
 [/and]
 [or]
 side=2
 [/or]
[/filter]

and what we probably wanted is:

[filter]
 has_weapon=sword
 gender=female
 [and]
 side=1

 [or]
 side=2
 [/or]

 [/and]
 [/filter]

Note that it could be written:

[filter]
 [and]

 has_weapon=sword
 gender=female
[/and]

 [and]
 side=1

 [or]
 side=2
 [/or]

 [/and]
 [/filter]

This syntax is correct and you can use it if you find it clearer.
Remembering this implicit and tag (and writing it explicitly at will) is very important to
understand or design complex filters.

Writing complex filters.

Here are some guidelines one can use when writing complex filters. Suppose we want to set
up some kind of disease aura harming units standing close to some villages. We shall start
writing a sentence describing the feature.
We want to select units who:
 Are enemy to side 1
 stand on hexes which
 are near to
 villages
 with side 1 units standing on it
Mark we put only one condition on each line to clearly separate them. Mark we sorted them,
because some apply to units to be filtered, others to locations, and finally to other (enemy)
units standing on locations. Next, we shall add logical operators and parenthesis to clearly
specify what we want:
Units, who (
 Are enemy to side 1 AND

stand on locations which (
 (Are villages AND

have unit on it who (
 Belongs to side 1
)
) OR
 are adjacent to THOSE villages radius 3
)
)
Now, we are ready to start building the filter. Since we want units who… it shall be a unit
filter. In the standard unit filter, there’s no condition directly allowing to state the unit is
enemy to side 1. So we have to replace this with something valid in the SUF context. Using
parenthesis to avoid errors, we can replace the condition with a side filter because it’s valid in
unit filters.

Units, who (
 (belongs to a side which (

is enemy to side 1)) AND
stand on locations which (

 (Are villages AND
have unit on it who (

 Belongs to side 1
)
) OR
 are adjacent to THOSE villages radius 3
)
)

Now we can write the filter. Here we do it step by step to show how the translation is rather
straightforward and how our parenthesis match exactly the subtags.

[filter]
 [filter_side]
 [enemy_of]
 side=1
 [/enemy_of]
 [/filter_side]

AND
stand on locations which (# we start to filter locations there

 (Are villages AND
have unit on it who (

 Belongs to side 1
)
) OR
 are adjacent to THOSE villages radius 3
)
 [/filter]

[filter]
 [filter_side]
 [enemy_of]
 side=1
 [/enemy_of]
 [/filter_side]
 [and]

[filter_location]
 terrain=*^V*

 AND
have unit on it who (# to unit filter again

 Belongs to side 1
)

 radius=3 # radius is a special case, see below
 [/filter_location]
 [/and]
 [/filter]

[filter]
 [filter_side]
 [enemy_of]
 side=1
 [/enemy_of]
 [/filter_side]
 [and]

[filter_location]
 terrain=*^V*
 [and]
 [filter]
 side=1
 [/filter]
 [/and]

 radius=3 # radius is a special case, see below
 [/filter_location]
 [/and]
 [/filter]

Here, we are done. The filter should work as it is, but it looks rather unusual because all these
[and] blocks. Actually we can delete most of them using a simple rule: [and] tags are not
needed when they contain one single criterion or a single block, (except if you want to set up
an evaluation order). In our example, the filter_location block is alone in its and tag, and the
embedded filter as well, so we can avoid those and tags and get finally:

 [event]
 name=moveto
 first_time_only=no
 [filter]
 [filter_side]
 [enemy_of]
 side=1
 [/enemy_of]
 [/filter_side]
 [filter_location]
 terrain=*^V*
 [filter]
 side=1
 [/filter]
 radius=3
 [/filter_location]
 [/filter]
 [harm_unit]
 [filter]
 id=$unit.id
 [/filter]
 amount=10
 animate=yes
 [/harm_unit]
 [/event]

Filters uses: events actions and conditions.

Here, we shall deal with filter uses in WML. The language is not fully consistent, mainly to
simplify its syntax, so some points can be misleading.

Using in actions

Most actions take a filter as first parameter. The main difficulty here is to know if [filter] tags
must be used or not. Actually, they’re used to avoid confusing keys and criteria when they
have the same name4. For instance, the [kill] action needs a unit filter and has these keys:

animate: if 'yes', displays the unit dying (fading away).

fire_event: if 'yes', triggers any appropriate 'die' events (See EventWML). Note that events

are only fired for killed units that have been on the map (as opposed to recall list).

[secondary_unit] with a StandardUnitFilter as argument. Do not use a [filter] tag. Has an

effect only if fire_event=yes. The first on-map unit matching the filter.

As we can see, none of these keys and tags are shared with unit filter keys and tags. This
means the code parser needs no [filter] tag to know which key belongs to the filter and which
to the action. But in the code, there’s no obvious distinction.

4 Note there’s no specific top level tag for location filters.

[kill]
 animate=yes # this belongs to the ‘kill’
 id=BadGuy_101 # this belongs to the unit filter
[/kill]

is the correct syntax. Note a common error is to use a [filter] tag here. Since this tag is
unknown in the context, it is ignored, so the kill action is applied to the starting set, i.e. all
units (including the recall lists). Same with the filter_side tag which is not needed
everywhere (in store_sides particularly).
Adversely, [modify_unit] obviously requires a [filter] tag, because all keys and criteria have
the same name:

[modify_unit]
 side=2
 side=1
[/modify_unit]

This would make no sense of course because one can’t find if side 1 units must be put into
side 2 or the contrary. Anyway, there is an exception: the [store_unit] tag requires a [filter]
tag even if there is no ‘variable’ key in units description. Another special case is when using
terrain action, because the key terrain is valid both in location filters and terrain action. Since
there is no special tag to delimit location filters, one should write:

[terrain]
 [and]
 terrain=Wo* # here is the filter criterion
 [/and]
 terrain=Rr # and the new terrain
[/terrain]

The next example can be confusing:

[kill]# kill all units standing on deep water
 animate=yes
 [filter_location]
 terrain=Wo
 [/filter_location]
 [/kill]

When reading the ‘kill’ tag documentation, one will not find any ‘filter_location’ or location
filter entry. Does this means it’s an undocumented feature ? No. But the ‘filter_location’
belongs to the implicit ‘filter’ tag of the ‘kill’ action and is documented there. It’s kind of:

[kill]# kill all units standing on deep water
 animate=yes
 #[filter] we’re filtering units here, not locations

 [filter_location]
 terrain=Wo

 [/filter_location]
 #[/filter]
 [/kill]

Using filters in conditions.

Filters can be used to create conditional expressions. They can be nested in [have_unit] or
[have_location] tags or in nested filters. Here, the result set is not used directly, but its size
must fall in the range defined by the ‘count’ key. This finally gives a Boolean result: true or
false. So one can use them in [if] [show_if] conditional actions or in a [filter_condition] tag.
They are widely used in nested filters too (see the special chapter on this).

Let’s give some examples:

[have_unit] # this piece of code evaluates to true when no more enemy
leaders are alive
 canrecruit=yes
 [not]
 side=1
 [/not]
 count=0
[/have_unit]

[have_location] # this one is true if at least 5 side 1 units stand on a
village
 terrain=*^V*
 [filter]
 side=1
 [/filter]
 count=5-1000
[/have_location]

Note we could also write this condition:

[have_unit]
 side=1
 [filter_location]
 terrain=*^V*
 [/filter_location]
 count=5-1000
[/have_unit]

Note we could use a [store_unit] instead, testing the length property of the array:

[store_unit]
 variable=temp
 [filter]
 side=1
 [filter_location]
 terrain=*^V*
 [/filter_location]
 [/filter]
[/store_unit]

#[if] or [filter_condition]

[variable]
 name=temp.length

 greater_than=4
[/variable]

Using filters in events.

In events, filters are always used in a conditional way, because they state if the event should
fire or not. In any event, we can set [filter_condition] using have_unit or have_location (and
a more ordinary variable condition, but this is off topic).
Some events use filters in a special way: moveto and attack events particularly. In them, the
filtering apply not on all units as usual, but only on units involved in the event action: one unit
only is moving at a time, two units only are involved in a fight. Then the event fires if and
only if the involved unit(s) match the filter.
Note that one can use [filter] and [filter_condition] in the same moveto or attack event.
Both conditions are then ANDed.

Filtering units

Criteria allowed to filter units (in standard unit filters) are listed below. First, the keys dealing
with the unit properties (as usual, comma separated lists means conditions are ORed):
id: can be a comma-separated list, every unit with one of these ids matches.

type: can be a list of types

race: (Version 1.11 and later only: this can be a comma-separated list)

ability: unit has an ability with the given id (not name !)

side: the unit is on the given side (can be a list). One can use a [filter_side] instead

has_weapon: the unit has a weapon with the given name

canrecruit: yes if the unit can recruit (i.e. is a leader)

gender: female if the unit is female rather than the default of male

role: the unit has been assigned the given role;

level: the level of the unit

defense: current defense of the unit on current tile

movement_cost: current movement cost of the unit on current tile

x,y: the position of the unit. (Ranges ? probably because it works in moveto events)

Not all unit properties are listed here, but they can be used in a [filter_wml] sub-tag like this:

[filter_wml]
 max_moves=7
[/filter_wml]

[filter_wml]
 [status]
 poisoned=yes
 [/status]
[/filter_wml]

Some of them accept comma separated lists or ranges. Some not, but it also possible to use
them more than once with [and] and [or] subtags. For instance :

[and]
 race= elf
 [or]
 race= merman
 [/or]
[/and]

Other sub tags are dealing with unit relationships:

 The hex on which they stand: [filter_location] which contains a standard location filter.
 The units adjacent to it: [filter_adjacent] which contains another standard unit filter
 Their visible status relating to a particular side: [filter_vision]

These are nested filters ; or in other words, filters used to create conditions and not result sets
(see earlier and later).

Custom functions returning a boolean:
formula: FormulaAI like formula.
lua_function: lua function

SUFs accept a find_in key too. As we saw earlier, this allows to restrict the starting set to the
content of an array.

this_unit

This variable is a special variable defined only inside SUFs. Suppose we want to catch in a
filter units at full health. We can use the hitpoints, but the problem is we know not which
value to use, because every unit type has its own:

[filter]
 side=1

[filter_wml]
 hitpoints=?
[/filter_wml]

 [/filter]

This is why we could have the use of some way to specify the unit being fetched during the
filtering.

[filter]
 side=1

[filter_wml]
 hitpoints=$this_unit.max_hitpoints
[/filter_wml]

 [/filter]

This does the trick. The condition value will be updated according to unit properties before
executing the check.

Filtering locations

find_in: a location array specifying the starting set.

time_of_day: one of lawful, chaotic, neutral or liminal.

time_of_day_id: one or more from: dawn, morning, afternoon, dusk, first_watch,

second_watch, indoors, underground and deep_underground.

terrain: comma separated list of terrains.

x,y: the same as in the unit filter; supports any range.

owner_side: If a valid side number, restricts stored locations to villages belonging to this

side. If 0, restricts to all unowned locations (the whole map except villages which belong to

some valid side). A hex is considered a village if and only if its [terrain_type]

gives_income= parameter was set to yes (which means a side can own that hex).

[filter_adjacent_location]: a standard location filter; if present the correct number of

adjacent locations must match this filter

[filter] with a Standard Unit Filter as argument; if present a unit must also be there

radius: this is not strictly speaking a criterion. It adds to the result set all hexes adjacent to a
matching hex and is always applied last, when all criteria are checked. Remember the filtering
process is a hidden loop where all candidates are fetched one by one. If a candidate match the
filter, radius adds all adjacent hexes (matching the filter or not !). If it don't, it does nothing.
This is why this example doesn't work:

 [filter] # this example doesn’t work !
 side=1
 [filter_location]
 x,y=43,32
 radius=5
 [not]
 x,y=43,32
 [/not]
 [/filter_location]
 [/filter]

The coder here expected the radius action to be performed just after selecting the 43,32 hex,
and the [not] criterion applied to this hex and it's adjacent radius 5 set. But radius is always
applied last, even if written before some other conditions. So when using radius, a good rule
is to create the filter without it at first and to see if it can catch something. Here, it would give:

 [filter]
 side=1
 [filter_location]
 x,y=43,32
 [not]
 x,y=43,32
 [/not]
 [/filter_location]
 [/filter]

which is clearly non sense because the two conditions are mutually exclusive.

The solution is to pack the conditions in two different filters:

 [filter]
 side=1
 [filter_location]
 x,y=43,32
 radius=5
 [/filter_location]
 [and]
 [filter_location]
 [not]
 x,y=43,32
 [/not]
 [/filter_location]
 [/and]
 [/filter]

or,
 [filter]
 side=1
 [filter_location]
 [and]
 x,y=43,32
 radius=5
 [/and]
 [not]
 x,y=43,32
 [/not]
 [/filter_location]
 [/filter]

or, since the x,y keys are defined in [filter] too, it can be:

 [filter]
 side=1
 [filter_location]
 x,y=43,32
 radius=5
 [/filter_location]
 [not]
 x,y=43,32
 [/not]
 [/filter]

This is why [filter_radius] is useful. As we said, radius adds hexes without checking any
condition (except proximity of course). If we want to put a condition on hexes added with
radius (and them only), we would use it as in next example. Here we want to select forested
hexes near villages:

 [filter_location]
 terrain=*^V*
 radius=3
 [filter_radius]
 terrain=*^F*
 [/filter_radius]
 [/filter_location]

But, this will not work exactly as in our previous example because radius extends outwards
from matching locations one step at a time. Only the locations matching the filter_radius will
be selected AND used to compute the next step. If there’s no forest hex near the village, the
previous filter will return nothing, even if there are some forest hexes farther in the range.

Note this filter selects the village too ! If we want not, this should be:

 [filter_location]
 [and]
 terrain=*^V*
 radius=3
 [filter_radius]
 terrain=*^F*
 [/filter_radius]
 [/and]
 [not]

terrain=*^V*
 [/not]

 [/filter_location]

Nested filters

Now, we are ready to study how to create nested filters, in other words, filters containing sub
filters. In location or unit filters, the documentation says one can insert filters of various kind
involving other objects. In this way, we can select unit adjacent to other units or standing on
some terrains. Actually, they’re not exactly filters: they are conditions or criteria built on
filters. In other words, they don’t produce a result set but are, like other criteria, expressions
evaluating to true or false. That’s why many of them have additional keys, like ‘count’ (see
the filter use in conditions).

We shall discuss this on examples.

Filter_adjacent.

In a unit filter, this allow to create criteria stating which units must be adjacent to the tested
unit. In this example, we shall implement an ability named ‘escape’. Units having this ability
can teleport elsewhere when surrounded by more than 3 enemies. We shall set a moveto event
to watch the ‘surround’ event.

 [event]
 name=moveto
 first_time_only=no
 [filter]
 # we could set some additional condition on the moving unit
here
 [filter_adjacent]
 ability=escape # this part fetches the adjacent units, not
the moving one.

 is_enemy=yes
 [/filter_adjacent] # this results to true if at least one unit
is found.
 [/filter]
…
 [/event]

This will fire each time some enemy unit get close to our able unit. Note we have here not
only a standard unit filter (the ability key), but special keys specifying relationships between
units : the is_enemy key. Another special key is the ‘count’ key. It allows to specify how
much adjacent units must be found. As far as the default is 1-6, we don’t need it here. But this
means more than one able unit can be surrounded by a single move.
Now, we must add the ‘surrounded’ condition. Here, we shall use a new filter_adjacent tag,
but applying to the able unit (not the moving one):

 [event]
 name=moveto
 first_time_only=no
 [filter]
 [filter_adjacent]
 ability=escape # this part filters the adjacent units, not
the moving one.

 [filter_adjacent]
 is_enemy=yes # this part finds adjacent units to the
able one.

 count=4-6
 [/filter_adjacent]
 is_enemy=yes
 [/filter_adjacent]
 [/filter]
…
 [/event]

Suppose we want now to apply one more condition for the ability to work : able unit must be
adjacent to another unit sharing the same ability. We must use a new filter_adjacent tag, and
since there is already one, use an ‘and’ tag to combine them.

 [event]
 name=moveto
 first_time_only=no
 [filter]
 # we could set some additional condition here
 [filter_adjacent]
 ability=escape
 [filter_adjacent]
 is_enemy=yes
 count=4-6
 [/filter_adjacent]
 [and]
 [filter_adjacent]
 ability=escape # these are the needed helpers
 is_enemy=no
 [/filter_adjacent]
 [/and]
 is_enemy=yes
 [/filter_adjacent]
 [/filter]
…
 [/event]

Note you’ll find very few examples of such complex filters in events. Why ? It’s because we
often need to catch the involved units to take some actions. In our example, we need not only
to test if our able units are surrounded but make them teleport as well. As a result, the filtering

process would probably be split in two, moving in the teleport filter the code which was in
the filter_adjacent tag:

 [event]
 name=moveto
 first_time_only=no
 [filter]
 # we could set some additional condition here
 [filter_adjacent]
 ability=escape
 is_enemy=yes
 # here was a block …
 [/filter_adjacent]
 [/filter]

[teleport]
 [filter]
 ability=escape

 [filter_adjacent] # … which was just moved here !
 is_enemy=yes
 count=4-6
 [/filter_adjacent]
 [and]
 [filter_adjacent]
 ability=escape # these are the needed helpers
 is_enemy=no
 #count=1-6 # since it’s the default, we don’t need
this
 [/filter_adjacent]
 [/and]

 [/filter]
 …
[/teleport]

 [/event]

Filter_location

Filter_location allows to specify on which hex the unit must be standing. Of course, since we
already have x,y keys in the standard unit filter, we don’t need to set a filter location for that.
Suppose our former ability should work only in forests. The filter_location is fitted for that.

[filter_location]
 terrain=*^F*
[/filter_location]

Where shall we put it ? Certainly not at the first level of the filter: this would make the ability
to work if the moving unit (the enemy) stands on forest. So the right place is in level 2 and 3
where we are dealing with the able units.

 [event]
 name=moveto
 first_time_only=no
 [filter]
 # we could set some additional condition here
 [filter_adjacent]
 ability=escape
 [filter_adjacent]
 is_enemy=yes
 count=4-6
 [/filter_adjacent]
 [and]
 [filter_adjacent]
 ability=escape # these are the needed helpers
 is_enemy=no
 [filter_location]
 terrain=*^F*

 [/filter_location]
 [/filter_adjacent]
 [/and]
 [filter_location]
 terrain=*^F*

 [/filter_location]
 is_enemy=yes
 [/filter_adjacent]
 [/filter]
…
 [/event]

pitfalls

One thing to avoid designing filters is using redundant or mutually exclusive criteria. In other
words, they specify a condition never or always met in any case. Let's give an example:

[filter]
 side=1
 [filter_adjacent]
 side=1
 is_enemy=yes
 [/filter_adjacent]
[/filter]

It's pretty obvious this filter will always return an empty set because side 1 units can't be
enemy to side 1. But this filter is valid and will raise no error ! Now, let's look at this one:

[filter]
 side=1
 [filter_adjacent]
 side=2
 is_enemy=yes
 [/filter_adjacent]
[/filter]

Here, we can mark the is_enemy key is redundant because sides already define if the units are
enemy or not. So, if side 1 and 2 are allied, the filter will always return an empty set. If they
are not, it will always match, so the is_enemy criterion is useless. This filter:

[filter]
 side=1
 [filter_adjacent]
 side=2
 [/filter_adjacent]
[/filter]

will always return exactly the same result (except if sides configuration is modified during the
scenario of course). Another example:

[filter]
 type=Horseman,Knight
 [filter_location]
 terrain=M*
 [/filter_location]
[/filter]

The result set will always be empty because these units can't walk on mountains. So, there's
no need to use such a filter and it's most probably a design error.

Another common error is assuming a filter will always return a single unit or location. In
conjunction with store_unit or store_locations, the result set will be an array or a single
variable:

[store_unit]
 variable=temp
 [filter]
 … anything
 [/filter]
[/store_unit]

[modify_unit]
 [filter]
 id=$temp.id
 [/filter]
 … something
[/modify_unit]

This will work only if the result set contains a single unit. Else, the temp.id will be empty, as
if the result set was empty. Instead, one should use temp[0].id or temp[$i].id in a loop. Or
better in this particular case: find_in=temp in the unit filter, because it handles correctly all
the cases.

Have fun !

Pyrophorus & Adamant14

